
113 Class Problems: Principal, Prime and Maximal Ide-

als

1. (a) Give an explicit description of all possible ideals of Z. Hint: Consider the possible
subgroups of a cyclic group.

(b) If (n) = (m) ⊂ Z what must be true about n and m?

(c) Let m ∈ N. Using the definition, prove that that (m) ⊂ Z is a prime ideal if and
only if m is prime.

(d) Let m ∈ N. Using the definition, prove that (m) ⊂ Z is maximal if and only if m
is prime.

This shows that prime and maximal ideals coincide in Z.
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2. (a) Prove that (x) ⊂ Z[x] is a prime ideal. Is it maximal? Hint: Can you realise (x) as
the kernel of some homomorphism?

(b) Let p be a prime and (p, x) = {f(x)p + g(x)x|f(x), g(x) ∈ Z[x]}. This is the ideal
generated by the set {p, x} as described in question 7 of homework 5. Prove that
(p, x) ⊂ Z[x]} is maximal.

Solutions:
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